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Recently, in a letter to the editor of this journal Wilms and Pinkney discussed a damped
linear three-degree-of-freedom system with two di!erent types of damping matrices (see
reference [1]). They examined the question whether or not undamped motions are possible
in their systems. Similar two-degree-of-freedom examples had been examined earlier in this
journal, the references being given in reference [1].

It seems to have escaped the authors' attention that the question examined in these
publications is the one of pervasiveness of damping in a linear system. This is an important
albeit rather elementary concept which is not new but unfortunately not always discussed in
textbooks. It is, for example, introduced by Meirovitch in his now classical book [2] and
also presented in many other vibration texts, for example in references [3}5]. Since it does
not seem to be su$ciently well known, here is a short discussion of this property.

Consider the n-degree-of-freedom system

MqK#Dq5 #Kq"0 (1)

with the real n-dimensional vector q of generalized co-ordinates and the real n]n matrices
MT"M'0, DT*0, KT"K'0. In the particular case D'0 (positive de"nite rather
than semi-de"nite) the damping is sometimes called complete. For D'0, all the free
motions are damped and there is no &&"nite residual motion''. However, D'0 is only
a su.cient, but not a necessary condition for all motions being damped.

If the matrices M, D and K are such that all the motions are damped, i.e. there is no &&"nite
residual motion'', then the system is said to have pervasive damping. As the example given in
reference [1] shows very clearly, the damping matrix D does not need to be de"nite in order
for the damping to be pervasive. Pervasiveness of the damping is not determined by the
damping matrix D only, but in general depends on all three matrices M, D and K.

The concept of pervasiveness of damping is related to the concept of controllability of
a linear system. As shown in reference [4], system (1) is pervasively damped if and only if the
system

MqK#Kq"Du (2)

is completely controllable via the control u (u is an n-dimensional vector). Correspondingly,
all the matrix criteria for controllability of linear systems can be used to check the
pervasiveness of damping. The most obvious criterion, although not necessarily the most
practical one, is

rank(!u2M#K!D)"n (3)
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for each u (circular eigenfrequency of the undamped system). Equation (3) simply indicates
that none of the eigenvalues of the undamped system is at the same time also an eigenvalue
of the damped system.

Of course, other criteria for controllability can also be used to check the pervasiveness of
damping. For example, a criterion for pervasive damping, not involving the circular
eigenfrequencies of the undamped system results from Kalman's criterion

rank(D(M~1K)(M~1D)(M~1K)2 (M~1D)2(M~1K)n~1(M~1D))"n (4)

(see e.g. [reference 4, Theorem 6.9, p. 165]; the German expression &&durchdringende
DaKmpfung'' is used for pervasive damping).

The author feels that the concept of pervasive damping is extremely relevant to
engineering vibrations, since engineers may wish to damp all the free vibrations of a system,
introducing a few dampers or dashpots only. In this case, the damping matrix D will not be
positive de"nite, but damping should still be pervasive. The concept is therefore used
exhaustively in all vibration courses taught by the author. It can and should of course also
be generalized to continuous and also to non-linear systems and this is regularly done. For
a discussion of the history of the concept of pervasive damping see [reference 5, p. 156].
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Professor Hagedorn points out that engineers may wish to damp out free vibrations with as
few dashpots as possible.

It appears that all motion will be damped out with just one dashpot, if it is located
between two points which always have a non-zero relative displacement for all the
undamped mode shapes. Stephen [1] pointed this out for the special case of two degrees of
freedom. (Note that it resulted in a highly unsymmetrical system.)
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